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C-Band 53.76 Tbit/s Transmission Based on Bit Allocation Optimization 
with Raman Amplification
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Abstract We experimentally demonstrate an 80-channel wavelength division multiplexing (WDM) transmission system 
over a 400 km fiber link.  Raman amplification results in a non-flat WDM signal spectrum.  Therefore, bit allocation 
optimization is used to enable different channels to carry different order quadrature amplitude modulation signals according 
to their optical signal-noise-ratios.  A neural network equalizer based on a convolutional neural network (CNN), long short-
term memory (LSTM) network, and fully connected (FC) layer structure is adopted in Rx digital signal processing, in 
which CNN is used for characteristic extraction, LSTM is used for equalization and demodulation, and FC layers are used 
for output.  After transmission, the bit error rate of all channels is below the 25% soft-decision forward error correction 
threshold, and the line rate reaches 53. 76 Tbit/s.
Key words wavelength division multiplexing transmission; Raman amplification; bit allocation optimization; neural 
network equalizer
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1　Introduction
Improving spectral efficiency via high-order 

quadrature amplitude modulation （QAM） formats for 
high-capacity transmission has been extensively investigated 
in coherent wavelength division multiplexing （WDM） 
transmission systems ［1-7］.  Stimulated Raman scattering 
（SRS） results in power transfer from short-wavelength 
channels to long-wavelength channels， which changes 
the signal power distribution across wavelengths along 
fiber propagation.  The application of distributed Raman 
amplification （DRA） and， in general， the dependence 
of amplified spontaneous emission （ASE） noise on the 
wavelength results in a wavelength-dependent optical 
signal-noise-ratio （OSNR）， where a longer wavelength 
channel has a larger OSNR.  Therefore， a wavelength-

dependent method is required to prevent the 
introduction of large system margins.  Power allocation 
has become the method of choice to limit the imbalance 
caused by Raman amplification ［8-15］.  However， power 
optimization based on the analytical Gaussian noise 

（GN） model has high calculation complexity and limits 
the exploitation of the WDM system capacity to the 
maximum ［16-20］.

In this study， we propose an optimization method 
based on bit allocation that produces a higher exploitable 
capacity while being straightforward to implement.  In the 
bit allocation optimization method， the QAM format per 
wavelength channel is identified using the received 
OSNR.  Compared with power optimization based on a 
mathematical model， bit allocation optimization has very 
low complexity and does not require detailed knowledge 
of the characteristics of the network components， 
especially the parameters of the fiber and optical amplifier.  
For the first time， we designed a hybrid convolution 
neural network， long short-term memory network， and 
fully connected layer （CNN-LSTM-FC） structure for 
polarization division multiplexing （PDM） QAM signal 
equalization while incorporating a combination of the 
advantages attributed to the CNN， LSTM network， and 
FC layer structure ［21-28］.  In a C-band coherent WDM 
system covering a 4 THz bandwidth， we experimentally 
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demonstrated an 80-channel 50 GHz grid transmission 
employing 48 Gbaud PDM QAM signals using a bit 
allocation method.  Owing to the neural network （NN） 
equalizer， 53. 76 Tbit/s WDM transmission over 400 km 
standard single mode fiber （SSMF） has been achieved， 
satisfying the 25% soft-decision forward error correction 
（SD-FEC） threshold.

2　Experimental setup
The experimental setup is shown in Fig.  1.  Tx 

digital signal processing （DSP） comprises a pre-

equalization and raised-cosine （RC） filter with 0. 01 
roll-off factor.  Eighty WDM channels were produced at 
the transmitter， consisting of odd-channel （Ch.  1， 3， 
5， … ， 79） and even-channel （Ch.  2， 4， 6， … ， 80） 
groups.  We used 80 external cavity lasers （ECLs） with 
less than 100 kHz linewidth to generate WDM channels 
operating from 1531. 51 nm to 1563. 05 nm.  The 
40 channels in the odd-channel group corresponded to 
the H18-57 channels in the ITU-T standard with a 
100 GHz frequency spacing， while the 40 channels in 
the even-channel group corresponded to the C18-57 
ITU-T channels with a 100 GHz frequency spacing.  
Furthermore， two polarization-maintaining arrayed 
waveguide gratings （PM-AWG） were used to combine 
the odd and even channels.

The output electrical signals from the four independent 
channels （Iodd， Qodd， Ieven， and Qeven） of a 64 GSa/s 
sampling rate arbitrary waveform generator （AWG） 
were boosted and fed into two 30 GHz in-phase/
quadrature （I/Q） modulators in the odd-channel and 
even-channel groups.  After the I/Q modulator， a 
polarization multiplexer comprising a 3 dB polarization-

maintaining optical coupler （PM-OC）， 1 m PM optical 
delay line， and polarization beam combiner （PBC） was 
used to generate PDM optical signals.  Subsequently， 
an erbium-doped fiber amplifier （EDFA） was added to 
adjust the launch optical power into the fiber link.  The 
fiber link consisted of four spans of 100 km SSMF with 
an attenuation coefficient of 0. 188 dB/km.  Each span 
had an ~18 dB ON-OFF gain backward-pumped 
Raman amplifier.  Fig.  2 shows photographs of the 
experimental setup comprising 80 ECLs and a 4 × 
100 km fiber link with Raman amplifiers.

The optical spectra of WDM signals employing the 
256QAM format before and after fiber transmission at 
0. 02 nm resolution are illustrated in Fig.  3（a） and 
（b）， respectively.  SRS results in a non-flat optical 
spectrum after Raman amplification.  The OSNR in a 
short-wavelength channel is low， and， unlike a long-

wavelength channel， a short-wavelength channel cannot 
support high-order QAM formats.  Therefore， to 
approach the maximum capacity of the WDM system， 
we adopted the bit allocation optimization method， 
where different channels carry QAM signals of different 
orders according to their OSNR.

After the fiber transmission， a tunable optical filter 
（TOF） was used to select the received optical signal of 
each test WDM channel.  In addition， a variable optical 
attenuator （VOA） was added to adjust the input optical 
power into an integrated coherent receiver.  We used 
another ECL signal as an optical local oscillator （LO） 
for homodyne detection.  After optical-to-electrical 
conversion， the received PDM signals were captured 
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Fig.  2　 Photographs of the experimental setup comprising 80 
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by an 80 GSa/s sampling rate oscilloscope with a 
36 GHz electrical bandwidth.  In the offline Rx-side 
DSP， an NN equalizer based on the CNN-LSTM-FC 
structure was used after resampling， chromatic 
dispersion （CD） compensation， constant-modulus 
algorithm （CMA） equalization， frequency offset， and 
carrier phase estimation.

3　NN structure
In the NN equalizer， we designed a hybrid CNN-

LSTM-FC structure， as illustrated in Fig.  4.  The front 
CNN layers extract high-order features of the input data， 
which compresses the input data ［29］.  The reported 
LSTM-FC layer structure has been widely verified to be 
effective in NN equalizers ［30］.  The proposed hybrid 
CNN-LSTM-FC layer structure combines the advantages 

of various NN layers.  Therefore， the effectiveness of the 
NN equalizer is significantly higher than that of an NN 
equalizer consisting of single-type layers［31］.  Because the 
PDM QAM signals can be depicted by four real data 
points： Ix， Qx， Iy， and Qy， the input dimension of the 
network is T × 4， where T represents the memory 
depth of the network.  After the input block， there are 
four cascaded one-dimensional convolution （1D Conv） 
layers in the CNN block.  For simplicity， the parameters 
of the four 1D convolutional layers are the same.  The 
tap of the convolution kernel was set to 1×7 to achieve 
its optimal performance.  The number of feature maps 
constructed by the convolution layer was set to 24 to 
balance the performance and calculation complexity.  
The values of the convolution kernels were initialized 
using Gaussian weight initialization.  The activation 
function of the CNN block was the ReLu function.  At 
the end of the CNN block， a max-pooling layer was used 
to reduce the number of calculation parameters and 
eliminate information redundancy.  The LSTM layer is a 
common model used in NN equalizers owing to its 
capability for storing time-domain information of the 
input.  The hidden units of the two LSTM layers were 
set to 128 and 64.  Subsequently， two fully connected 
layers， which contained 50 and 20 neural units， were 
used to output the Ix， Qx， Iy， and Qy values of the PDM-

QAM signals.  The nonlinear activation function of these 
two fully connected layers was a sigmoid function 
suitable for the output of the LSTM layer.  A dropout 
layer was set after the first FC layer to suppress 
overfitting of the neural network.  The loss function of 
the entire network was set as the mean squared error 
function.  The batch size and training epochs were set to 
64 and 40， respectively.  The gradient optimizer was 
adapted from Adam.

Fig.  3　 Spectra.  (a) WDM signals fiber launch spectrum; 
(b) output spectrum after fiber transmission with 

Raman amplification

Fig. 4 Schematic overview of NN equalizer based on CNN-LSTM-FC structure



0736002-4

快　　报 第  60 卷第  7 期/2023 年  4 月/激光与光电子学进展

4　Results and discussions
First， we loaded the same data into the AWG in 

the transmitter and selected the optical signal of each 
wavelength channel using the TOF in the receiver.  An 
optical spectrum analyzer was used to capture the 
selected optical signal and measure its OSNR.  The 
received OSNR after fiber transmission versus the 
wavelength is shown in Fig.  5.  Subsequently， in the 
bit allocation optimization method， the QAM format 
per wavelength channel was identified by the received 
OSNR.  Therein， 26 long-wavelength channels （1552. 93‒
1563. 05 nm） carried 256QAM signals， 26 short-
wavelength channels （1531. 51 ‒ 1541. 35 nm） carried 
64QAM signals， and the remaining 28 channels of the 
intermediate wavelength （1541. 75 ‒ 1552. 52 nm） 
carried 128QAM signals.  For each wavelength channel， 
we loaded the data with the corresponding QAM format 
into the AWG in the transmitter and selected the signal of 
this channel via the TOF in the receiver.  The total line 
rate of this WDM transmission system was （26×6+28×
7+26×8）×2×48=53. 76 Tbit/s.

As shown in Fig.  6， after 400 km fiber 
transmission， the bit error rate （BER） of each channel 

is below the 25% SD-FEC threshold at 4. 2 × 10−2.  
Considering a 25% SD-FEC overhead， the net bit rate 
is thus 53. 76 × 0. 8 = 43. 008 Tbit/s.

5　Conclusions
An 80-channel 50 GHz grid WDM transmission 

employing 48 Gbaud PDM signals was demonstrated 
using the bit allocation optimization method.  Owing to 
the NN equalizer based on a hybrid CNN-LSTM-FC 
structure， 53. 76 Tbit/s line rate （43. 008 Tbit/s net 
rate） transmission over a 400 km fiber link can be 
achieved.
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